Add to Wishlist
-20%
Potential Theory
By John Wermer
Publisher: Springer
₹2,901.00 Original price was: ₹2,901.00.₹2,321.00Current price is: ₹2,321.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Potential Theory” Cancel reply
Book information
Edition
2nd Edition
ISBN [Softcover]
9783540102762
Publisher
Springer
Year
1981
Pages
X, 174 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Complex Analysis Problem Book
By Daniel Alpay
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given.
-20%
A Complex Analysis Problem Book
By Daniel Alpay
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given.
-20%
A Course on Topological Vector Spaces
Includes a streamlined introduction to the duality theory of locally convex spaces, culminating in the Mackey-Arens theorem Treats various important topics concerning the weak topology of Banach spaces Discusses examples of function spaces which occur in applications to differential operators and measure theory Provides as a highlight the treatment of weak compactness in L_1-spaces
-20%
A Course on Topological Vector Spaces
Includes a streamlined introduction to the duality theory of locally convex spaces, culminating in the Mackey-Arens theorem Treats various important topics concerning the weak topology of Banach spaces Discusses examples of function spaces which occur in applications to differential operators and measure theory Provides as a highlight the treatment of weak compactness in L_1-spaces
-20%
A Concise Introduction to Analysis
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables.
-20%
A Concise Introduction to Analysis
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Reviews
There are no reviews yet.