Add to Wishlist
-20%
Rational Homotopy Theory and Differential Forms
Publisher: Springer
₹13,852.00 Original price was: ₹13,852.00.₹11,082.00Current price is: ₹11,082.00.
Second edition with fully updated content Includes a readable introduction for non-specialists Provides many elementary examples and exercises
Usually dispatched in 2 to 3 days
Safe & secure checkout
SKU:
NGS003919
Category:
Mathematics
Second edition with fully updated content Includes a readable introduction for non-specialists Provides many elementary examples and exercises
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Rational Homotopy Theory and Differential Forms” Cancel reply
Book information
Edition
2nd Edition
ISBN [Hardcover]
9781461484677
ISBN [Softcover]
9781493936991
Publisher
Springer
Year
2013
Pages
XI, 227 p.
Series Title
Progress in Mathematics
Language
English
Related Products
-20%
A Course in Python: The Core of the Language
A hands-on introduction to Python, ideal for a first course or self-study Provides numerous worked-out exercises showing how to write programs in Python Includes several case studies with code, as well as practice problems
-20%
A Course in Python: The Core of the Language
A hands-on introduction to Python, ideal for a first course or self-study Provides numerous worked-out exercises showing how to write programs in Python Includes several case studies with code, as well as practice problems
-20%
A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.
-20%
A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions

Reviews
There are no reviews yet.