-21%
Alfonso’s Rectifying the Curved
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
This volume offers a new English translation, introduction, and detailed commentary on Sefer Meyasher 'Aqov, (The Rectifying of the Curved), a 14th-century Hebrew treatise on the foundation of geometry. The book is a mixture of two genres: philosophical discussion and formal, Euclidean-type geometrical writing. A central issue is the use of motion and superposition in geometry, which is analyzed in depth through dialog with earlier Arab mathematicians.
The author, Alfonso, was identified by Gita Gluskina (the editor of the 1983 Russian edition) as Alfonso of Valladolid, the converted Jew Abner of Burgos. Alfonso lived in Castile, rather far from the leading cultural centers of his time, but nonetheless at the crossroad of three cultures. He was raised in the Jewish tradition and like many Sephardic Jewish intellectuals was versed in Greek-Arabic philosophy and science. He also had connections with some Christian nobles and towards the end of his life converted to Christianity. Driven by his ambition to solve the problem of the quadrature of the circle, as well as other open geometrical problems, Alfonso acquired surprisingly wide knowledge and became familiar with several episodes in Greek and Arabic geometry that historians usually consider not to have been known in the West in the fourteenth century. Sefer Meyasher 'Aqov reflects his wide and deep erudition in mathematics and philosophy, and provides new evidence on cultural transmission around the Mediterranean.
-21%
Alfonso’s Rectifying the Curved
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
This volume offers a new English translation, introduction, and detailed commentary on Sefer Meyasher 'Aqov, (The Rectifying of the Curved), a 14th-century Hebrew treatise on the foundation of geometry. The book is a mixture of two genres: philosophical discussion and formal, Euclidean-type geometrical writing. A central issue is the use of motion and superposition in geometry, which is analyzed in depth through dialog with earlier Arab mathematicians.
The author, Alfonso, was identified by Gita Gluskina (the editor of the 1983 Russian edition) as Alfonso of Valladolid, the converted Jew Abner of Burgos. Alfonso lived in Castile, rather far from the leading cultural centers of his time, but nonetheless at the crossroad of three cultures. He was raised in the Jewish tradition and like many Sephardic Jewish intellectuals was versed in Greek-Arabic philosophy and science. He also had connections with some Christian nobles and towards the end of his life converted to Christianity. Driven by his ambition to solve the problem of the quadrature of the circle, as well as other open geometrical problems, Alfonso acquired surprisingly wide knowledge and became familiar with several episodes in Greek and Arabic geometry that historians usually consider not to have been known in the West in the fourteenth century. Sefer Meyasher 'Aqov reflects his wide and deep erudition in mathematics and philosophy, and provides new evidence on cultural transmission around the Mediterranean.
-21%
Change and Variations
Original price was: ₹ 3,328.00.₹ 2,662.00Current price is: ₹ 2,662.00.
This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.
-21%
Change and Variations
Original price was: ₹ 3,328.00.₹ 2,662.00Current price is: ₹ 2,662.00.
This book presents a history of differential equations, both ordinary and partial, as well as the calculus of variations, from the origins of the subjects to around 1900. Topics treated include the wave equation in the hands of d’Alembert and Euler; Fourier’s solutions to the heat equation and the contribution of Kovalevskaya; the work of Euler, Gauss, Kummer, Riemann, and Poincaré on the hypergeometric equation; Green’s functions, the Dirichlet principle, and Schwarz’s solution of the Dirichlet problem; minimal surfaces; the telegraphists’ equation and Thomson’s successful design of the trans-Atlantic cable; Riemann’s paper on shock waves; the geometrical interpretation of mechanics; and aspects of the study of the calculus of variations from the problems of the catenary and the brachistochrone to attempts at a rigorous theory by Weierstrass, Kneser, and Hilbert. Three final chapters look at how the theory of partial differential equations stood around 1900, as they were treated by Picard and Hadamard. There are also extensive, new translations of original papers by Cauchy, Riemann, Schwarz, Darboux, and Picard. The first book to cover the history of differential equations and the calculus of variations in such breadth and detail, it will appeal to anyone with an interest in the field. Beyond secondary school mathematics and physics, a course in mathematical analysis is the only prerequisite to fully appreciate its contents. Based on a course for third-year university students, the book contains numerous historical and mathematical exercises, offers extensive advice to the student on how to write essays, and can easily be used in whole or in part as a course in the history of mathematics. Several appendices help make the book self-contained and suitable for self-study.
-20%
Fifty Years of Women in Mathematics
Published on 2024
Original price was: ₹ 10,460.00.₹ 8,368.00Current price is: ₹ 8,368.00.
The Association for Women in Mathematics (AWM), the oldest organization in the world for women in mathematics, had its fiftieth anniversary in 2021. This collection of refereed articles, illustrated by color photographs, reflects on women in mathematics and the organization as a whole. Some articles focus on the situation for women in mathematics at various times and places, including other countries. Others describe how individuals have shaped AWM, and, in turn, how the organization has impacted individuals as well as the broader mathematical community. Some are personal stories about careers in mathematics. Fifty Years of Women in Mathematics: Reminiscences, History, and Visions for the Future of AWM covers a span from AWM’s beginnings through the following fifty years. The volume celebrates AWM and its successes but does not shy away from its challenges.
The book is designed for a general audience. It provides interesting and informative reading for people interested in mathematics, gender equity, or organizational structures; teachers of mathematics; students at the high school, college, and graduate levels; and members of more recently established organizations for women in mathematics and related fields or prospective founders of such organizations.
-20%
Fifty Years of Women in Mathematics
Original price was: ₹ 10,460.00.₹ 8,368.00Current price is: ₹ 8,368.00.
The Association for Women in Mathematics (AWM), the oldest organization in the world for women in mathematics, had its fiftieth anniversary in 2021. This collection of refereed articles, illustrated by color photographs, reflects on women in mathematics and the organization as a whole. Some articles focus on the situation for women in mathematics at various times and places, including other countries. Others describe how individuals have shaped AWM, and, in turn, how the organization has impacted individuals as well as the broader mathematical community. Some are personal stories about careers in mathematics. Fifty Years of Women in Mathematics: Reminiscences, History, and Visions for the Future of AWM covers a span from AWM’s beginnings through the following fifty years. The volume celebrates AWM and its successes but does not shy away from its challenges.
The book is designed for a general audience. It provides interesting and informative reading for people interested in mathematics, gender equity, or organizational structures; teachers of mathematics; students at the high school, college, and graduate levels; and members of more recently established organizations for women in mathematics and related fields or prospective founders of such organizations.
-21%
Jost Bürgi’s Aritmetische und Geometrische Progreß Tabulen (1620)
Original price was: ₹ 4,754.00.₹ 3,803.00Current price is: ₹ 3,803.00.
This monograph presents a groundbreaking scholarly treatment of the German mathematician Jost Bürgi’s original work on logarithms, Arithmetische und Geometrische Progreß Tabulen. It provides the first-ever English translation of Bürgi’s text and illuminates his role in the development of the conception of logarithms, for which John Napier is traditionally given priority. High-resolution scans of each page of the his handwritten text are reproduced for the reader and as a means of preserving an important work for which there are very few surviving copies.The book begins with a brief biography of Bürgi to familiarize readers with his life and work, as well as to offer an historical context in which to explore his contributions.The second chapter then describes the extant copies of the Arithmetische und Geometrische Progreß Tabulen, with a detailed description of the copy that is the focus of this book, the 1620 “Graz manuscript”. A complete facsimile of the text is included in the next chapter, along with a corresponding transcription and an English translation; a transcription of a second version of the manuscript (the “Gdansk manuscript”) is included alongside that of the Graz edition so that readers can easily and closely examine the differences between the two.The final chapter considers two important questions about Bürgi’s work, such as who was the copyist of the Graz manuscript and what the relationship is between the Graz and Gdansk versions. Appendices are also included that contain a timeline of Bürgi’s life, the underlying concept of Napier’s construction of logarithms, and scans of all 58 sheets of the tables from Bürgi’s text.
Anyone with an appreciation for the history of mathematics will find this book to be an insightful and interesting look at an important and often overlooked work. It will also be a valuable resource for undergraduates taking courses in the history of mathematics, researchers of the history of mathematics, and professors of mathematics education who wish to incorporate historical context into their teaching.
-21%
Jost Bürgi’s Aritmetische und Geometrische Progreß Tabulen (1620)
Original price was: ₹ 4,754.00.₹ 3,803.00Current price is: ₹ 3,803.00.
This monograph presents a groundbreaking scholarly treatment of the German mathematician Jost Bürgi’s original work on logarithms, Arithmetische und Geometrische Progreß Tabulen. It provides the first-ever English translation of Bürgi’s text and illuminates his role in the development of the conception of logarithms, for which John Napier is traditionally given priority. High-resolution scans of each page of the his handwritten text are reproduced for the reader and as a means of preserving an important work for which there are very few surviving copies.The book begins with a brief biography of Bürgi to familiarize readers with his life and work, as well as to offer an historical context in which to explore his contributions.The second chapter then describes the extant copies of the Arithmetische und Geometrische Progreß Tabulen, with a detailed description of the copy that is the focus of this book, the 1620 “Graz manuscript”. A complete facsimile of the text is included in the next chapter, along with a corresponding transcription and an English translation; a transcription of a second version of the manuscript (the “Gdansk manuscript”) is included alongside that of the Graz edition so that readers can easily and closely examine the differences between the two.The final chapter considers two important questions about Bürgi’s work, such as who was the copyist of the Graz manuscript and what the relationship is between the Graz and Gdansk versions. Appendices are also included that contain a timeline of Bürgi’s life, the underlying concept of Napier’s construction of logarithms, and scans of all 58 sheets of the tables from Bürgi’s text.
Anyone with an appreciation for the history of mathematics will find this book to be an insightful and interesting look at an important and often overlooked work. It will also be a valuable resource for undergraduates taking courses in the history of mathematics, researchers of the history of mathematics, and professors of mathematics education who wish to incorporate historical context into their teaching.
-21%
Jost Bürgi’s Aritmetische und Geometrische Progreß Tabulen (1620)
Original price was: ₹ 4,754.00.₹ 3,803.00Current price is: ₹ 3,803.00.
This monograph presents a groundbreaking scholarly treatment of the German mathematician Jost Bürgi’s original work on logarithms, Arithmetische und Geometrische Progreß Tabulen. It provides the first-ever English translation of Bürgi’s text and illuminates his role in the development of the conception of logarithms, for which John Napier is traditionally given priority. High-resolution scans of each page of the his handwritten text are reproduced for the reader and as a means of preserving an important work for which there are very few surviving copies.The book begins with a brief biography of Bürgi to familiarize readers with his life and work, as well as to offer an historical context in which to explore his contributions.The second chapter then describes the extant copies of the Arithmetische und Geometrische Progreß Tabulen, with a detailed description of the copy that is the focus of this book, the 1620 “Graz manuscript”. A complete facsimile of the text is included in the next chapter, along with a corresponding transcription and an English translation; a transcription of a second version of the manuscript (the “Gdansk manuscript”) is included alongside that of the Graz edition so that readers can easily and closely examine the differences between the two.The final chapter considers two important questions about Bürgi’s work, such as who was the copyist of the Graz manuscript and what the relationship is between the Graz and Gdansk versions. Appendices are also included that contain a timeline of Bürgi’s life, the underlying concept of Napier’s construction of logarithms, and scans of all 58 sheets of the tables from Bürgi’s text.
Anyone with an appreciation for the history of mathematics will find this book to be an insightful and interesting look at an important and often overlooked work. It will also be a valuable resource for undergraduates taking courses in the history of mathematics, researchers of the history of mathematics, and professors of mathematics education who wish to incorporate historical context into their teaching.
-21%
Jost Bürgi’s Aritmetische und Geometrische Progreß Tabulen (1620)
Original price was: ₹ 4,754.00.₹ 3,803.00Current price is: ₹ 3,803.00.
This monograph presents a groundbreaking scholarly treatment of the German mathematician Jost Bürgi’s original work on logarithms, Arithmetische und Geometrische Progreß Tabulen. It provides the first-ever English translation of Bürgi’s text and illuminates his role in the development of the conception of logarithms, for which John Napier is traditionally given priority. High-resolution scans of each page of the his handwritten text are reproduced for the reader and as a means of preserving an important work for which there are very few surviving copies.The book begins with a brief biography of Bürgi to familiarize readers with his life and work, as well as to offer an historical context in which to explore his contributions.The second chapter then describes the extant copies of the Arithmetische und Geometrische Progreß Tabulen, with a detailed description of the copy that is the focus of this book, the 1620 “Graz manuscript”. A complete facsimile of the text is included in the next chapter, along with a corresponding transcription and an English translation; a transcription of a second version of the manuscript (the “Gdansk manuscript”) is included alongside that of the Graz edition so that readers can easily and closely examine the differences between the two.The final chapter considers two important questions about Bürgi’s work, such as who was the copyist of the Graz manuscript and what the relationship is between the Graz and Gdansk versions. Appendices are also included that contain a timeline of Bürgi’s life, the underlying concept of Napier’s construction of logarithms, and scans of all 58 sheets of the tables from Bürgi’s text.
Anyone with an appreciation for the history of mathematics will find this book to be an insightful and interesting look at an important and often overlooked work. It will also be a valuable resource for undergraduates taking courses in the history of mathematics, researchers of the history of mathematics, and professors of mathematics education who wish to incorporate historical context into their teaching.
-21%
Kurt Gödel
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
Paris of the year 1900 left two landmarks: the Tour Eiffel, and David Hilbert's celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert's ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel's incompleteness theorem. Gödel then went on to attack Hilbert's first and second Paris problems, namely Cantor's continuum problem about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert's first question could not be answered by any known means, half of the credit of this seeming faux pas going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers.
This book, Gödel's lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert's second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. It offers indispensable reading for logicians, mathematicians, and computer scientists interested in foundational questions. It will form a basis for further investigations into Gödel's vast Nachlass of unpublished notes on how to extend the results of his lectures to the theory of real numbers. The book also gives insights into the conceptual and formal work that is needed for the solution of profound scientific questions, by one of the central figures of 20th century science and philosophy.
-21%
Kurt Gödel
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
Paris of the year 1900 left two landmarks: the Tour Eiffel, and David Hilbert's celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert's ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel's incompleteness theorem. Gödel then went on to attack Hilbert's first and second Paris problems, namely Cantor's continuum problem about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert's first question could not be answered by any known means, half of the credit of this seeming faux pas going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers.
This book, Gödel's lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert's second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. It offers indispensable reading for logicians, mathematicians, and computer scientists interested in foundational questions. It will form a basis for further investigations into Gödel's vast Nachlass of unpublished notes on how to extend the results of his lectures to the theory of real numbers. The book also gives insights into the conceptual and formal work that is needed for the solution of profound scientific questions, by one of the central figures of 20th century science and philosophy.
-21%
Kurt Gödel
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
Paris of the year 1900 left two landmarks: the Tour Eiffel, and David Hilbert's celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert's ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel's incompleteness theorem. Gödel then went on to attack Hilbert's first and second Paris problems, namely Cantor's continuum problem about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert's first question could not be answered by any known means, half of the credit of this seeming faux pas going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers.
This book, Gödel's lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert's second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. It offers indispensable reading for logicians, mathematicians, and computer scientists interested in foundational questions. It will form a basis for further investigations into Gödel's vast Nachlass of unpublished notes on how to extend the results of his lectures to the theory of real numbers. The book also gives insights into the conceptual and formal work that is needed for the solution of profound scientific questions, by one of the central figures of 20th century science and philosophy.
-21%
Kurt Gödel
Original price was: ₹ 9,509.00.₹ 7,607.00Current price is: ₹ 7,607.00.
Paris of the year 1900 left two landmarks: the Tour Eiffel, and David Hilbert's celebrated list of twenty-four mathematical problems presented at a conference opening the new century. Kurt Gödel, a logical icon of that time, showed Hilbert's ideal of complete axiomatization of mathematics to be unattainable. The result, of 1931, is called Gödel's incompleteness theorem. Gödel then went on to attack Hilbert's first and second Paris problems, namely Cantor's continuum problem about the type of infinity of the real numbers, and the freedom from contradiction of the theory of real numbers. By 1963, it became clear that Hilbert's first question could not be answered by any known means, half of the credit of this seeming faux pas going to Gödel. The second is a problem still wide open. Gödel worked on it for years, with no definitive results; The best he could offer was a start with the arithmetic of the entire numbers.
This book, Gödel's lectures at the famous Princeton Institute for Advanced Study in 1941, shows how far he had come with Hilbert's second problem, namely to a theory of computable functionals of finite type and a proof of the consistency of ordinary arithmetic. It offers indispensable reading for logicians, mathematicians, and computer scientists interested in foundational questions. It will form a basis for further investigations into Gödel's vast Nachlass of unpublished notes on how to extend the results of his lectures to the theory of real numbers. The book also gives insights into the conceptual and formal work that is needed for the solution of profound scientific questions, by one of the central figures of 20th century science and philosophy.
-20%
Leibniz on the Parallel Postulate and the Foundations of Geometry
Original price was: ₹ 11,411.00.₹ 9,129.00Current price is: ₹ 9,129.00.
This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz (1646-1716) and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the seventeenth-century studies on the foundations of geometry. It also provides a detailed mathematical and philosophical commentary on his writings on the theory of parallels, and discusses how they were received in the eighteenth century as well as their relevance for the non-Euclidean revolution in mathematics. The second part offers a collection of Leibniz’s essays on the theory of parallels and an English translation of them. While a few of these papers have already been published (in Latin) in the standard Leibniz editions, most of them are transcribed from Leibniz’s manuscripts written in Hannover, and published here for the first time. The book provides new material on the history of non-Euclidean geometry, stressing the previously neglected role of Leibniz in these developments.This volume will be of interest to historians in mathematics, philosophy or logic, as well as mathematicians interested in non-Euclidean geometry.
-20%
Leibniz on the Parallel Postulate and the Foundations of Geometry
Original price was: ₹ 11,411.00.₹ 9,129.00Current price is: ₹ 9,129.00.
This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz (1646-1716) and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the seventeenth-century studies on the foundations of geometry. It also provides a detailed mathematical and philosophical commentary on his writings on the theory of parallels, and discusses how they were received in the eighteenth century as well as their relevance for the non-Euclidean revolution in mathematics. The second part offers a collection of Leibniz’s essays on the theory of parallels and an English translation of them. While a few of these papers have already been published (in Latin) in the standard Leibniz editions, most of them are transcribed from Leibniz’s manuscripts written in Hannover, and published here for the first time. The book provides new material on the history of non-Euclidean geometry, stressing the previously neglected role of Leibniz in these developments.This volume will be of interest to historians in mathematics, philosophy or logic, as well as mathematicians interested in non-Euclidean geometry.
-21%
Leibniz on the Parallel Postulate and the Foundations of Geometry
Original price was: ₹ 8,083.00.₹ 6,466.00Current price is: ₹ 6,466.00.
This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz (1646-1716) and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the seventeenth-century studies on the foundations of geometry. It also provides a detailed mathematical and philosophical commentary on his writings on the theory of parallels, and discusses how they were received in the eighteenth century as well as their relevance for the non-Euclidean revolution in mathematics. The second part offers a collection of Leibniz’s essays on the theory of parallels and an English translation of them. While a few of these papers have already been published (in Latin) in the standard Leibniz editions, most of them are transcribed from Leibniz’s manuscripts written in Hannover, and published here for the first time. The book provides new material on the history of non-Euclidean geometry, stressing the previously neglected role of Leibniz in these developments.This volume will be of interest to historians in mathematics, philosophy or logic, as well as mathematicians interested in non-Euclidean geometry.
-21%
Leibniz on the Parallel Postulate and the Foundations of Geometry
Original price was: ₹ 8,083.00.₹ 6,466.00Current price is: ₹ 6,466.00.
This book offers a general introduction to the geometrical studies of Gottfried Wilhelm Leibniz (1646-1716) and his mathematical epistemology. In particular, it focuses on his theory of parallel lines and his attempts to prove the famous Parallel Postulate. Furthermore it explains the role that Leibniz’s work played in the development of non-Euclidean geometry. The first part is an overview of his epistemology of geometry and a few of his geometrical findings, which puts them in the context of the seventeenth-century studies on the foundations of geometry. It also provides a detailed mathematical and philosophical commentary on his writings on the theory of parallels, and discusses how they were received in the eighteenth century as well as their relevance for the non-Euclidean revolution in mathematics. The second part offers a collection of Leibniz’s essays on the theory of parallels and an English translation of them. While a few of these papers have already been published (in Latin) in the standard Leibniz editions, most of them are transcribed from Leibniz’s manuscripts written in Hannover, and published here for the first time. The book provides new material on the history of non-Euclidean geometry, stressing the previously neglected role of Leibniz in these developments.This volume will be of interest to historians in mathematics, philosophy or logic, as well as mathematicians interested in non-Euclidean geometry.