Add to Wishlist
-20%
Global Geometry and Mathematical Physics: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Montecatini Terme, Italy, July 4-12, 1988
Publisher: Springer
₹2,901.00 Original price was: ₹2,901.00.₹2,321.00Current price is: ₹2,321.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
SKU:
NGS001029
Category:
Mathematics
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Global Geometry and Mathematical Physics: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Montecatini Terme, Italy, July 4-12, 1988” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540532866
Publisher
Springer
Year
1990
Pages
XI, 193 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
A Course on Optimization and Best Approximation
-20%
A Course on Optimization and Best Approximation
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.
-20%
A Basic Guide to Uniqueness Problems for Evolutionary Differential Equations
This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded.

Reviews
There are no reviews yet.