Add to Wishlist
-20%
Group Theoretic Methods in Bifurcation Theory
Publisher: Springer
₹5,511.00 Original price was: ₹5,511.00.₹4,410.00Current price is: ₹4,410.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Group Theoretic Methods in Bifurcation Theory” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540097150
Publisher
Springer
Year
1979
Pages
V, 244 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course in Functional Analysis and Measure Theory
Provides necessary preliminaries Explores basic and advanced material in functional analysis and operator theory, including applications to Fourier series and the Fourier transform Includes over 1500 exercises
-20%
A Course in Functional Analysis and Measure Theory
Provides necessary preliminaries Explores basic and advanced material in functional analysis and operator theory, including applications to Fourier series and the Fourier transform Includes over 1500 exercises
-20%
A Course in Algebraic Error-Correcting Codes
By Simeon Ball
Provides a rigorous mathematical perspective on error-correcting codes Offers a pathway from the basics to the state-of-the-art, suitable for either independent study or the classroom Corresponds to a one-semester course, where each chapter suits a two-hour lecture Includes numerous helpful exercises with selected solutions provided Includes supplementary material: sn.pub/extras
-20%
A Course in Algebraic Error-Correcting Codes
By Simeon Ball
Provides a rigorous mathematical perspective on error-correcting codes Offers a pathway from the basics to the state-of-the-art, suitable for either independent study or the classroom Corresponds to a one-semester course, where each chapter suits a two-hour lecture Includes numerous helpful exercises with selected solutions provided Includes supplementary material: sn.pub/extras
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Reviews
There are no reviews yet.