Add to Wishlist
-21%
Harmonic Analysis: Proceedings of a Conference Held at the University of Minnesota, Minneapolis, April 20-30, 1981
Publisher: Springer
₹3,944.00 Original price was: ₹3,944.00.₹3,155.00Current price is: ₹3,155.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Harmonic Analysis: Proceedings of a Conference Held at the University of Minnesota, Minneapolis, April 20-30, 1981” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540111887
Publisher
Springer
Year
1982
Pages
VIII, 328 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course on Tug-of-War Games with Random Noise
This graduate textbook provides a detailed introduction to the probabilistic interpretation of nonlinear potential theory, relying on the recently introduced notion of tug-of-war games with noise.The book explores both basic and more advanced constructions, carefully explaining the parallel between linear and nonlinear cases.
-20%
A Course on Tug-of-War Games with Random Noise
This graduate textbook provides a detailed introduction to the probabilistic interpretation of nonlinear potential theory, relying on the recently introduced notion of tug-of-war games with noise.The book explores both basic and more advanced constructions, carefully explaining the parallel between linear and nonlinear cases.
-20%
A Basic Course in Probability Theory
-20%
A Basic Course in Probability Theory
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Reviews
There are no reviews yet.