Add to Wishlist
-20%
Model Theory and Algebraic Geometry: An introduction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture
Publisher: Springer
₹5,511.00 Original price was: ₹5,511.00.₹4,410.00Current price is: ₹4,410.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
SKU:
NGS001560
Category:
Mathematics
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Model Theory and Algebraic Geometry: An introduction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540648635
Publisher
Springer
Year
1998
Pages
XV, 216 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course in Differential Geometry
This English edition could serve as a text for a first year graduate course on differential geometry, as did for a long time the Chicago Notes of Chern mentioned in the Preface to the German Edition.
-20%
A Course in Differential Geometry
This English edition could serve as a text for a first year graduate course on differential geometry, as did for a long time the Chicago Notes of Chern mentioned in the Preface to the German Edition.
-20%
A Course on Rough Paths: With an Introduction to Regularity Structures
Provides a self-contained introduction to rough path analysis with many exercises Includes applications to stochastic partial differential equations Covers the basics of the new theory of regularity structures
-20%
A Course on Rough Paths: With an Introduction to Regularity Structures
Provides a self-contained introduction to rough path analysis with many exercises Includes applications to stochastic partial differential equations Covers the basics of the new theory of regularity structures
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
A Concise Course on Stochastic Partial Differential Equations
This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions.
-20%
A Concise Course on Stochastic Partial Differential Equations
This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions.

Reviews
There are no reviews yet.