Add to Wishlist
-20%
Modern Trends in Fuzzy Graph Theory
Publisher: Springer
₹5,512.00 Original price was: ₹5,512.00.₹4,410.00Current price is: ₹4,410.00.
This book provides an extensive set of tools for applying fuzzy mathematics and graph theory to real-life problems.
Usually dispatched in 2 to 3 days
Safe & secure checkout
This book provides an extensive set of tools for applying fuzzy mathematics and graph theory to real-life problems.
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Modern Trends in Fuzzy Graph Theory” Cancel reply
Book information
Edition
1st Edition
ISBN [Hardcover]
9789811588020
ISBN [Softcover]
9789811588051
Publisher
Springer
Year
2020
Pages
XVI, 311 p.
Language
English
Related Products
-20%
A Compact Course on Linear PDEs
The book addresses the rigorous foundations of mathematical analysis. The first part presents a complete discussion of the fundamental topics: a review of naive set theory, the structure of real numbers, the topology of R, sequences, series, limits, differentiation and integration according to Riemann.
-20%
A Compact Course on Linear PDEs
The book addresses the rigorous foundations of mathematical analysis. The first part presents a complete discussion of the fundamental topics: a review of naive set theory, the structure of real numbers, the topology of R, sequences, series, limits, differentiation and integration according to Riemann.
-20%
A Course in Algebraic Error-Correcting Codes
By Simeon Ball
Provides a rigorous mathematical perspective on error-correcting codes Offers a pathway from the basics to the state-of-the-art, suitable for either independent study or the classroom Corresponds to a one-semester course, where each chapter suits a two-hour lecture Includes numerous helpful exercises with selected solutions provided Includes supplementary material: sn.pub/extras
-20%
A Course in Algebraic Error-Correcting Codes
By Simeon Ball
Provides a rigorous mathematical perspective on error-correcting codes Offers a pathway from the basics to the state-of-the-art, suitable for either independent study or the classroom Corresponds to a one-semester course, where each chapter suits a two-hour lecture Includes numerous helpful exercises with selected solutions provided Includes supplementary material: sn.pub/extras
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
A Concise Introduction to Analysis
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables.
-20%
A Concise Introduction to Analysis
This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more advanced analysis text and covers topics in both real and complex variables.

Reviews
There are no reviews yet.