Add to Wishlist
-20%
Real Algebraic Varieties
Publisher: Springer
₹11,767.00 Original price was: ₹11,767.00.₹9,414.00Current price is: ₹9,414.00.
This book gives a systematic presentation of real algebraic varieties.
Real algebraic varieties are ubiquitous.
Usually dispatched in 2 to 3 days
Safe & secure checkout
SKU:
NGS003921
Category:
Mathematics
This book gives a systematic presentation of real algebraic varieties.
Real algebraic varieties are ubiquitous.
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Real Algebraic Varieties” Cancel reply
Book information
Edition
1st Edition
ISBN [Hardcover]
9783030431037
ISBN [Softcover]
9783030431068
Publisher
Springer
Year
2020
Pages
XVIII, 444 p.
Series Title
Springer Monographs in Mathematics
Language
English
Related Products
-20%
A Course in Simple-Homotopy Theory
This book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970.
-20%
A Course in Simple-Homotopy Theory
This book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970.
-20%
A Course in Functional Analysis and Measure Theory
Provides necessary preliminaries Explores basic and advanced material in functional analysis and operator theory, including applications to Fourier series and the Fourier transform Includes over 1500 exercises
-20%
A Course in Functional Analysis and Measure Theory
Provides necessary preliminaries Explores basic and advanced material in functional analysis and operator theory, including applications to Fourier series and the Fourier transform Includes over 1500 exercises
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Reviews
There are no reviews yet.