Add to Wishlist
-20%
The Souslin Problem
Publisher: Springer
₹2,901.00 Original price was: ₹2,901.00.₹2,321.00Current price is: ₹2,321.00.
Usually dispatched in 2 to 3 days
Safe & secure checkout
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “The Souslin Problem” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540068600
Publisher
Springer
Year
1974
Pages
X, 138 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.
-20%
A Concise Introduction to Measure Theory
This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration.
The author takes an approach to integration based on the notion of distribution.
-20%
A Concise Introduction to Measure Theory
This undergraduate textbook offers a self-contained and concise introduction to measure theory and integration.
The author takes an approach to integration based on the notion of distribution.
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions
-20%
(Mostly) Commutative Algebra
Offers a unified presentation of stability results for dynamical systems using Lyapunov-like characterizations Provides derivation of strong/weak complete instability results for systems in terms of Lyapunov-like and comparison functions Discusses combined stability and avoidance problem for control systems from the perspective of Lyapunov functions

Reviews
There are no reviews yet.