Add to Wishlist
-20%
Tutorials in Mathematical Biosciences I: Mathematical Neuroscience
Publisher: Springer
₹5,511.00 Original price was: ₹5,511.00.₹4,410.00Current price is: ₹4,410.00.
This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters.
Usually dispatched in 2 to 3 days
Safe & secure checkout
This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters.
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Tutorials in Mathematical Biosciences I: Mathematical Neuroscience” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540238584
Publisher
Springer
Year
2005
Pages
X, 170 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course on Topological Vector Spaces
Includes a streamlined introduction to the duality theory of locally convex spaces, culminating in the Mackey-Arens theorem Treats various important topics concerning the weak topology of Banach spaces Discusses examples of function spaces which occur in applications to differential operators and measure theory Provides as a highlight the treatment of weak compactness in L_1-spaces
-20%
A Course on Topological Vector Spaces
Includes a streamlined introduction to the duality theory of locally convex spaces, culminating in the Mackey-Arens theorem Treats various important topics concerning the weak topology of Banach spaces Discusses examples of function spaces which occur in applications to differential operators and measure theory Provides as a highlight the treatment of weak compactness in L_1-spaces
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
A Circle-Line Study of Mathematical Analysis
This book addresses the issue of uniqueness of a solution to a problem – a very important topic in science and technology, particularly in the field of partial differential equations, where uniqueness guarantees that certain partial differential equations are sufficient to model a given phenomenon.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
*- Autonomous Categories
By Michael Barr
This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields.
-20%
*- Autonomous Categories
By Michael Barr
This book stems from lectures on commutative algebra for 4th-year university students at two French universities (Paris and Rennes). At that level, students have already followed a basic course in linear algebra and are essentially fluent with the language of vector spaces over fields.

Reviews
There are no reviews yet.