Add to Wishlist
-20%
Yetter-Drinfel’d Hopf Algebras over Groups of Prime Order
Publisher: Springer
₹3,422.00 Original price was: ₹3,422.00.₹2,738.00Current price is: ₹2,738.00.
Includes supplementary material: sn.pub/extras
Usually dispatched in 2 to 3 days
Safe & secure checkout
Includes supplementary material: sn.pub/extras
Additional information
| Book Format | Hardcover, Softcover |
|---|
Be the first to review “Yetter-Drinfel’d Hopf Algebras over Groups of Prime Order” Cancel reply
Book information
Edition
1st Edition
ISBN [Softcover]
9783540437994
Publisher
Springer
Year
2002
Pages
VIII, 164 p.
Series Title
Lecture Notes in Mathematics
Language
English
Related Products
-20%
A Course in Python: The Core of the Language
A hands-on introduction to Python, ideal for a first course or self-study Provides numerous worked-out exercises showing how to write programs in Python Includes several case studies with code, as well as practice problems
-20%
A Course in Python: The Core of the Language
A hands-on introduction to Python, ideal for a first course or self-study Provides numerous worked-out exercises showing how to write programs in Python Includes several case studies with code, as well as practice problems
-20%
A Compact Course on Linear PDEs
The book addresses the rigorous foundations of mathematical analysis. The first part presents a complete discussion of the fundamental topics: a review of naive set theory, the structure of real numbers, the topology of R, sequences, series, limits, differentiation and integration according to Riemann.
-20%
A Compact Course on Linear PDEs
The book addresses the rigorous foundations of mathematical analysis. The first part presents a complete discussion of the fundamental topics: a review of naive set theory, the structure of real numbers, the topology of R, sequences, series, limits, differentiation and integration according to Riemann.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
(In-)Stability of Differential Inclusions
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.
-20%
A Course on Hopf Algebras
This textbook provides a concise, visual introduction to Hopf algebras and their application to knot theory, most notably the construction of solutions of the Yang–Baxter equations.

Reviews
There are no reviews yet.